4.1 Signal and Noise

From Sense & Sensibility & Science
Topic Icon - 4.1 Signal and Noise.png

To make sense of this complex world, how do we confidently identify a meaningful pattern amongst a myriad of distractions? Scientists call the pattern "signal" and the distractions "noise." We clarify this subtle distinction and introduce techniques to make the signal stand out from the noise, such as with the use of filters.

The Lesson in Context

We introduce the concept of signal and noise in "detection problems" and teach students how to identify the signal and various sources of noise in diverse scenarios. This foreshadows the ethical considerations in deciding how strong a signal must be to be counted as a "positive".

Earlier Lessons

2.2 Systematic and Statistical UncertaintyTopic Icon - 2.2 Systematic and Statistical Uncertainty.png
  • Both systematic and statistical uncertainties introduce noise to every measurement.
3.1 Probabilistic ReasoningTopic Icon - 3.1 Probabilistic Reasoning.png
  • The presence of noise, which sometimes disguises as a signal, is inevitable in any measurement. The identification of a signal always comes with a roughly quantifiable level of confidence.

Later Lessons

4.2 Finding Patterns in Random NoiseTopic Icon - 4.2 Finding Patterns in Random Noise.png
  • In addition to the signal-to-noise ratio, there are other statistical tools (e.g. [math]\displaystyle{ p }[/math]-value) to quantify the strength of the signal amidst all the noise.
5.1 False Positives and NegativesTopic Icon - 5.1 False Positives and Negatives.png
  • "Positive" and "negative" refer to whether we identify what we detect as a signal or not. The decision of any "threshold" of strength for a signal to be counted as positive inevitably involves human values judgment in a trade-off between the rates of false positives and false negatives.
5.2 Scientific OptimismTopic Icon - 5.2 Scientific Optimism.png
  • Some signals in nature seem hopelessly too weak to detect, such as the tiny fluctuations in the distance between two mirrors as a result of the gravitational waves from faraway black holes, but scientists spend decades to develop new instruments to increase the strength of the signal, as well as new analysis techniques to filter out the noise.
6.1 Correlation and CausationTopic Icon - 6.1 Correlation and Causation.png
  • The detection of a "statistically significant" difference between conditions in an RCT is the identification of a signal. The random variations that exist between experimental subjects are a source of noise.

Takeaways

After this lesson, students should

  1. Be able to explain what scientists mean by "signal," "noise," and "signal-to-noise ratio."
  2. Be able to identify examples of "signal" and "noise," recognizing that these examples are context-dependent.
  3. Be able to roughly compare measurement techniques in terms of their resultant signal-to-noise ratios.
  4. Be able to describe examples of techniques and tools to suppress noise and/or amplify signal.

Additional Content

You must be logged in to see this content.